
Hardware Specifics 6-1

 (10 July 2006)

 * *
 * Section 6 - Hardware Specifics *
 * *

 This section of the manual contains pages dealing in a
general way with dynamic memory allocation in GAMESS, the
BLAS routines, and vectorization.

 The remaining portions of this section consist of
specific suggestions for each type of machine. You should
certainly read the section pertaining to your computer. It
is a good idea to look at the rest of the machines as well,
as you may get some ideas! The directions for executing
GAMESS are given, along with hints and other tidbits. Any
known problems with certain compiler versions are described
in the control language files themselves, not here.

 The currently supported machines are all running Unix.
The embedded versions for IBM mainframes and VAX/VMS have
not been used in many years, and are no longer described
here. There are binary versions for Windows available on
our web site, but we do not supply a source code version
for Windows (except that the Unix code will compile under
the Cygwin Unix environment for Windows). Please note that
with the OS X system, the Macintosh is considered to be a
system running Unix, and is therefore well supported.

Dynamic memory in GAMESS __ 2
BLAS routines ___ 4
Vectorization of GAMESS__ 5
Notes for specific machines ___ 7

Hardware Specifics 6-2

Dynamic memory in GAMESS

 GAMESS allocates its working memory from one large pool
of memory. This pool consists of a single large array,
which is partitioned into smaller arrays as GAMESS needs
storage. When GAMESS is done with a piece of memory, that
memory is freed for other uses.

 The units for memory are words, a term which GAMESS
defines as the length used for floating point numbers, 64
bits, that is 8 bytes per word.

 GAMESS contains two memory allocation schemes. For
some systems, a primitive implementation allocates a large
array of a *FIXED SIZE* in a common named /FMCOM/. This is
termed the "static" implementation, and the parameter
MWORDS in $SYSTEM cannot request an amount larger than
chosen at compile time. Wherever possible, a "dynamic"
allocation of the memory is done, so that MWORDS can (in
principle) request any amount. The memory management
routines take care of the necessary details to fool the
rest of the program into thinking the large memory pool
exists in common /FMCOM/.

 Computer systems which have "static" memory allocation
are IBM mainframes running VM or MVS to which we have no
direct access for testing purposes. If your job requires a
larger amount of memory than is available, your only
recourse is to recompile UNPORT.SRC after choosing a larger
value for MEMSIZ in SETFM.

 Computer which have "dynamic" memory allocation are all
Unix systems and VMS. In principle, MWORDS can request any
amount you want to use, without recompiling. In practice,
your operating system will impose some limitation. As
outlined below, common sense imposes a lower limit than
your operating system will.

 By default, most systems allocate a small amount of
memory: one million words. This amount is quite small by
modern standards, and therefore exists on all machines. It
is left up to you to increase this with your MWORDS input
to what your machine has. EXETYP=CHECK runs will always
tell you the amount of memory you need.

 Many computations in GAMESS implement out of memory
algorithms, whenever the in memory algorithm can require an

Hardware Specifics 6-3

excessive amount. The in memory algorithms will perform
very poorly when the work arrays reside in virtual memory
rather than physical memory. This excessive page faulting
activity can be avoided by letting GAMESS choose its out of
core algorithms. These are programmed such that large
amounts of numbers are transferred to and from disk at the
same time, as opposed to page faulting for just a few
values in that page. So, pick an amount for MWORDS that
will reside in the physical memory of your system! MWORDS,
multiplied by 8, is roughly the number of Mbytes and should
not exceed more than about 90% of your installed memory
(less if you are sharing the computer with other jobs!).

 The routines involved in memory allocation are VALFM,
to determine the amount currently in use, GETFM to grab a
block of memory, and RETFM to return it. Note that calls
to RETFM must be in exactly inverse order of the calls to
GETFM. SETFM is called once at the beginning of GAMESS to
initialize, and BIGFM at the end prints a "high water mark"
showing the maximum memory demand. GOTFM tells how much
memory is not yet allocated.

Hardware Specifics 6-4

BLAS routines

 The BLAS routines (Basic Linear Algebra Subprograms)
are designed to perform primitive vector operations, such
as dot products, or vector scaling. They are often found
implemented in a system library, even on scalar machines.
If this is the case, you should use the vendor's version!

 The BLAS are a simple way to achieve BOTH moderate
vectorization AND portability. The BLAS are easy to
implement in FORTRAN, and are provided in the file BLAS.SRC
in case your computer does not have these routines in a
library.

 The BLAS are defined in single and double precision,
e.g. SDOT and DDOT. The very wonderful implementation of
generic functions in FORTRAN 77 has not yet been extended
to the BLAS. Accordingly, all BLAS calls in GAMESS use the
double precision form, e.g. DDOT. The source code
activator translates these double precision names to single
precision, for machines such as Cray which run in single
precision.

 If you have a specialized BLAS library on your machine,
for example IBM's ESSL, Compaq's CXML, or Sun's Performance
Library, using them can produce significant speedups in
correlated calculations. The compiling scripts attempt to
detect your library, but if they fail to do so, it is easy
to use one:
 a) remove the compilation of 'blas' from 'compall',
 b) if the library includes level 3 BLAS, set the value
 of 'BLAS3' to true in 'comp',
 c) in 'lked', set the value of BLAS to a blank, and
 set libraries appropriately, e.g. to '-lessl'.
Check the compilation log for mthlib.src, in particular, to
be sure that your library is being found. It has a
profound effect on the speed of MP2 and CC computations!

 The reference for the level 1 BLAS is
 C.L.Lawson, R.J.Hanson, D.R.Kincaid, F.T.Krogh
 ACM Trans. on Math. Software 5, 308-323(1979)

Hardware Specifics 6-5

Vectorization of GAMESS

 As a result of a Joint Study Agreement between IBM and
NDSU, GAMESS has been tuned for the IBM 3090 vector
facility (VF), together with its high performance vector
library known as the ESSL. This vectorization work took
place from March to September of 1988, and resulted in
a program which is significantly faster in scalar mode, as
well as one which can take advantage (at least to some
extent) of a vector processor's capabilities. Since our
move to ISU we no longer have access to IBM mainframes,
but support for the VF, as well as MVS and VM remains
embedded within GAMESS. Several other types of vector
computers are supported as well.

 Anyone who is using a current version of the program,
even on scalar machines, owes IBM their thanks both for
NDSU's having had access to a VF, and the programming time
to do code improvements in the second phase of the JSA,
from late 1988 to the end of 1990.

 Some of the vectorization consisted of rewriting loops
in the most time consuming routines, so that a vectorizing
compiler could perform automatic vectorization on these
loops. This was done without directives, and so any
vectorizing compiler should be able to recognize the same
loops.

 In cases where your compiler allows you to separate
scalar optimization from vectorization, you should choose
not to vectorize the following sections: INT2A, GRD2A,
GRD2B, and GUGEM. These sections have many very small
loops, that will run faster in scalar mode. The remaining
files will benefit, or at least not suffer from automatic
compiler vectorization.

 The highest level of performance, obtained by
vectorization at the matrix level (as opposed to the
vector level operations represented by the BLAS) is
contained in the file VECTOR.SRC. This file contains
replacements for the scalar versions of routines by the
same names that are contained in the other source code
modules. VECTOR should be loaded after the object code
from GAMESS.SRC, but before the object code in all the
other files, so that the vector versions from VECTOR are
the ones used.

Hardware Specifics 6-6

 Most of the routines in VECTOR consist of calls to
vendor specific libraries for very fast matrix operations,
such as IBM's Engineering and Scientific Subroutine
Library (ESSL). Look at the top of VECTOR.SRC to see
what vector computers are supported currently.

 If you are trying to bring GAMESS up on some other
vector machine, do not start with VECTOR. The remaining
files (excepting BLAS, which are probably in a system
library) represent a complete, working version of GAMESS.
Once you have verified that all the regular code is
running correctly, then you can adapt VECTOR to your
machine for the maximum possible performance.

 Vector mode SCF runs in GAMESS on the IBM 3090 will
proceed at about 90 percent of the scalar speed on these
machines. Runs which compute an energy gradient may
proceed slightly faster than this. MCSCF and CI runs
which are dominated by the integral transformation step
will run much better in vector mode, as the transformation
step itself will run in about 1/4 time the scalar time on
the IBM 3090 (this is near the theoretical capability of
the 3090's VF). However, this is not the only time
consuming step in an MCSCF run, so a more realistic
expectation is for MCSCF runs to proceed at 0.3-0.6 times
the scalar run. If very large CSF expansions are used
(say 20,000 on up), however, the main bottleneck is the CI
diagonalization and there will be negligible speedup in
vector mode. Several stages in an analytic hessian
calculation benefit significantly from vector processing.

 A more quantitative assessment of this can be reached
from the following CPU times obtained on a IBM 3090-200E,
with and without use of its vector facility:

 ROHF grad RHF E RHF hess MCSCF E
 ------- ------ ------- ------
scalar 168 (1) 164 (1) 917 (1) 903 (1)
vector 146 (0.87) 143 (0.87) 513 (0.56) 517 (0.57)

Hardware Specifics 6-7

Notes for specific machines

 GAMESS will run on many kinds of UNIX computers. These
systems runs the gamut from very BSD-like systems to very
ATT-like systems, and even AIX. Our experience has been
that all of these UNIX systems differ from each other. So,
putting aside all the hype about "open systems", we divide
the Unix world into four classes:

 Supported: Apple MAC under OS X, HP/Compaq/DEC AXP, HP
PA-RISC, IBM RS/6000, Intel Pentium and AMD 32 bit
equivalents, 64 bit Intel Itanium2, and Sun ultraSPARC.
These are the only types of computer we currently have at
ISU, so these are the only systems we can be reasonably
sure will work (at least on the hardware model and O/S
release we are using). Both the source code and control
language is correct for these.

 Acquainted: 64 bit AMD chips (e.g. Opteron), Compaq
SuperCluster, Cray PVP, Cray X1, Cray XD1, Fujitsu PP, IBM
SP, NEC SX, and SGI MIPS. We don't have any of these
systems at ISU, so we can't guarantee that these work.
GAMESS has been run on each of these, but perhaps not
recently. The source code for these systems is probably
correct, but the control language may not be. Be sure to
run all the test cases to verify that the current GAMESS
still works on these brands.

 Jettisoned: Alliant, Apollo, Ardent, Celerity, Convex,
Cray T3D, DECstations, FPS model 500, Fujitsu AP and VPP,
HP Exemplar, Hitachi SR, IBM AIX mainframes, Intel Paragon,
Kendall Square, MIPS, NCube, and Thinking Machines. In
most cases the company is out of business, or the number of
machines in use has dropped to near zero. Of these, only
the Celerity version's passing should be mourned, as this
was the original UNIX port of GAMESS, back in July 1986.

 Terra Incognita: everything else! You will have to
decide on the contents of UNPORT, write the scripts, and
generally use your head.

 * * * * *

 You should have a file called "readme.unix" at hand
before you start to compile GAMESS. These directions
should be followed carefully. Before you start, read the
notes on your system below, and read the compiler clause

Hardware Specifics 6-8

for your system in 'comp', as notes about problems with
certain compiler versions are kept there.

 Execution is by means of the 'rungms' script, and you
can read a great deal more about its DDIKICK command in the
installation guide 'readme.ddi'. Note in particular that
execution of GAMESS now uses System V shared memory on many
systems, and this will often require reconfiguring the
system's limits on shared memory and semaphores, along with
a reboot. Full details of this are in 'readme.ddi.

 Users may find examples of the scalability of parallel
runs in the Programmer's Reference chapter of this manual.

 * * * * * *

 AMD Opteron (and other AMD 64 bit chips): Target is
'amd64', running Linux. The default compiler is gfortran,
which is robust and apparently faster than the commercial
products pgf77 or ifort, although you can modify the
"comp", "compddi", and "lked" scripts to use any of these.
The AMD company provides a free download of the ACML math
library, so the scripts assume you have obtained this. See
the top of the "amd64" clause in "comp" about compilers and
this math library. This version is based on information
from Shiro Koseki, Hiroaki Umeda, and Ted Packwood.

 AXP: These are scalar systems. This category means
any AXP machines, whether labeled Digital or Compaq or HP
on the front, with an O/S called OSF1, Digital Unix, or
Tru64. It also includes systems running Linux, see below.
The unique identifier is therefore the AXP chip, so the
compiling target is 'axp64', rather than a company name.

 High end Compaq systems such as the SuperCluster
product support a SHMEM implementation for one-sided
message passing, use target 'compaq-shmem' for this.

 The compiling script invokes the f77 compiler, so read
'comp' if you have the f90 compiler instead. This version
was changed to use native 64 bit integers in fall 1998.

 You can also run GAMESS on AXP Linux, by using the
Tru64 Compaq compilers, which permit the Tru64 version to
run. Do not use g77 which allocates 32 bit integers, as
the system's malloc routine for dynamic memory allocation
returns 64 bit addresses, which simply cannot be stored in

Hardware Specifics 6-9

32 bit integers. The Compaq compilers can easily generate
64 bit integers, so obtain FORTRAN and C from
 http://h18000.www1.hp.com/products/software/alpha-tools
Then compile and link using target 'compaq-axp'.

 Cray XT3: a massively parallel platform, based on dual
Opteron processor blades connected by Cray's 3D mesh,
running a microkernel named Catamount. The SHMEM library
is not ready yet, and the microkernel does not permit the
use of TCP/IP, so the parallel support is the pure MPI code
in DDI, using data servers. Porting to this machine was
done by Ted Packwood of Cray in October 2005.

 Cray XD1: This is a system composed of 2-way SMP
blades, based on Opteron chips, and using the Rapid Array
custom network. This version uses TCP/IP as the message
passing layer. The port to this machine was supplied by
Ted Packwood of Cray in June 2005.

 Cray X1 and X1E: this is a vector processor system,
using the SHMEM library as its parallel support. This
version was supplied by Ted Packwood of Cray in March 2003.

 Cray T3E: A massively parallel computer from Cray.
This machine uses its native SHMEM library for effective
use of distributed data (and all other messages too). We
use this version on a DoD T3E regularly, and it should
install and run quite well. We thank Howard Pritchard for
his help with understanding SHMEM.

 Cray PVP: this means J90 and SV1 type vector systems.
Thanks to Dick Hilderbrandt, Kim Baldridge, Richard Walsh,
and Howard Pritchard for their help with Cray systems and
UNICOS. This is an obsolescent product line, and this
version has not been tested in some time. TCP/IP sockets
and System V memory are the parallel scheme used.

 Digital: See AXP above.

 Fujitsu: The PrimePower is a parallel system based on
SPARC CPUs, and so is much like a Sun, although it uses
different compilers. The control language for this was
written by Roger Amos at Australian National University
Supercomputer Facility in March 2003 and updated in January
2005, with Dmitri Fedorov contributing changes for the new
DDI code in 2004. If your system has less than 2 Gbytes of
memory per processor, request the 32 bit version, as this
runs a bit (5%) faster than the 64 bit version. The latter

Hardware Specifics 6-10

should be used in order to address a larger installed
memory.

 HP: Any Itanium2 or PA-RISC series workstation. Help
with this version has come from due to Fred Senese, Don
Phillips, Tsuneo Hirano, and Zugmunt Krawczyk. Dave
Mullally at HP has been involved in siting HP systems at
ISU, presently Itanium2 based. So, we used 'hpux32' for
many years, but are now running only the 'hpux64' version.
The latter version can be considered to be carefully
checked since it is in use at ISU, but please be a little
more careful checking tests if you try 'hpux32'.

 IBM: "superscalar" RS/6000. There are two targets for
IBM workstations, namely "ibm32" and "ibm64", neither of
these should be used on a SP system. The 64 bit version
should be used only in the following conditions:
 a) you have a Power3 machine, or newer
 b) you are running AIX 4.3.1, or higher
 c) you have XL FORTRAN 5.1.1, or higher
All other situations should compile with "ibm32". In case
you have only Power4 or Power5 chips, consider changing the
-qtune and -qarch options from pwr3 to match your case.
Parallelization is achieved using the TCP/IP socket calls
found in AIX.

 IBM-SP: The SP parallel systems. This is a 64 bit
implementation. The new DDI library will operate with LAPI
support for one-sided messaging, and a special execution
script for LoadLeveler is included.

 IBM Blue Gene: The BG/L is a massively parallel
machine, made with the 32 bit PowerPC 440 chip with a dual
FPU, with a fixed memory of 512 MB RAM. Its DDI uses the
ARMCI library, running over MPI, so it does not use data
servers. The Blue Gene port was done by Brian Smith of IBM
and Brett Bode, and included in GAMESS in June 2005.
Changes to use ARMCI in 2007 are from Andrey Asadchev of
ISU. Special notes, and various files used on this system
are stored in ~/gamess/misc/ibm-bg.

 Linux32: this means any kind of 32 bit chips, but
typically is used only when "uname -p" replies "x86".
Nearly every other chip is 64 bits, so see also Linux64
just below. This version is originally due to Pedro
Vazquez in Brazil in 1993, and modified by Klaus-Peter
Gulden in Germany. The usefulness of this version has
matched the steady growth of interest in PC Unix, due to
the improvement in CPU, memory, and disks, to workstation

Hardware Specifics 6-11

levels. We acquired a 266 MHz Pentium-II PC running RedHat
Linux in August 1997, and found it performed flawlessly.
In 1998 we obtained six 400 MHz Pentium-IIs for sequential
use, and in 1999 a 16 PC cluster, running in parallel day
in and day out. At present we have a number of 32 bit
Athlons, running Fedora Core 1. We have used RedHat 4.2,
5.1, 6.1, and 7.1 prior to Core 1, and therefore feel that
essentially any RedHat distribution should work. The
version relies on g77 (or gfortran, your choice, please
look inside "comp"), gcc, and the gcclib, so it should work
for any kind of 32 bit Linux (there are no processor-
specific options used). The version uses TCP/IP and
SystemV shared memory for parallelization, but if you have
a fast network and a good MPI library, and are very good at
learning how to use your computer, you can consider using
MPI according to directions in "readme.ddi".

Downloading a BLAS library from the network for use on
LINUX is heartily recommended. Some URL's are
 http://www.cs.utk.edu/~ghenry/distrib/index.htm <- ASCI
 http://sourceforge.net/projects/math-atlas
 http://developer.intel.com/software/products/mkl
 http://www.cs.utexas.edu/users/flame/ITXGEMM
We are using the ASCI 1.2F precompiled Pentium2 library for
both Pentium and Athlon processors. If your library isn't
named /usr/local/bin/libblas-asci.a, simply change the
"comp" and the "lked" scripts to match your name choice.

 Linux64: this means any sort of 64 bit chip running an
appropriate 64 bit Linux operating system. This version is
based on gfortran, gcc, and the gcclib, and since it does
not contain any processor-specific options, it should run
on any 64-bit Linux system. This means you are not limited
to those machines where "uname -p" returns x86_64 or ia64,
but or more exotic chips like AXP or SPARC, you may have to
help the scripts find a BLAS library. It defaults to
TCP/IP sockets and SystemV memory usage for parallel runs.
The compiling scripts let you choose FORTRAN compilers
other than gfortran.

 Linux-ia64: this means any 64 bit Intel-compatible
chip: the Itanium2 (ia64 instruction set), or various
others (x86_64 instruction set, aka EM64T), with names like
CoreDuo or Woodcrest or Xeon or AMD Opteron. There is no
source code difference between these "uname -p" replies, so
there is only one compiling target. The compiling scripts
have to use different path names, and sometimes different
flags, but should not require human intervention, as they
can detect either possible instruction set automatically.

Hardware Specifics 6-12

These systems are available from a number of sources,
including SGI, NEC, HP, and others. Typically the
operating system will be a 64-bit version of Linux. The
compilers are Intel's ifort and gnu's gcc. Intel's MKL
library for the BLAS is linked for extra performance, using
the runtime environment variable MKL_SERIAL set to YES.
Please read the 'comp' script about obtaining these
compilers, and their version numbers.

 An SGI Altix system (based on Itanium2, first a 3000
model in June 2003, and then a 450 model after September
2006), and two SGI XE 210 blades (which are based on EM64T
Woodcrest chips, since September 2006), have been loaned by
SGI to Iowa State University. This means that both
Itanium2 and EM64T installations are now well tested. This
version relies on TCP/IP sockets and System V memory for
message passing. However, please see the file "readme.ddi"
for how to use MPI on the Voltaire Infiniband network found
in SGI's XE series, as MPI runs better than "IP over IB".

 Fred Arnold of Northwestern University created the
initial port, in June 2002. Additional assistance with
this version came from NEC's Jan Fredin, including use of
NEC's MathKeisan library for the BLAS. Since the loan of
the first SGI Altix, ISU has done the maintenance of this
version.

 Macintosh OS X: This is for Mac running OS X, which is
a genuine Unix system "under the hood". This version
closely resembles the Linux version for PC, including 2 GB
file size limitations. The compiler is g77, but check out
the notes in 'comp' about xlf if you have a G5. Notes in
'comp' will tell you how to get these compilers. TCP/IP
sockets and System V memory are used as the message passing
transport for parallel jobs.

 Here are two tricks for Tiger, using the mac32 target,
which we hope to make invisible someday. But right now,
the scripts are presently correct for Panther, and Tiger
requires two hand edits:
 a) in 'compddi', remove the -Dsocklen_t=int parameter
 b) in 'compall', add -DCLK_TCK=100 to "extraflags"
Of course, both of these apply to the 'mac32' sections.
This has been tested with gcc 4.0 from Apple, and g77 3.4
from Fink.

 NEC SX: vector system. This port was done by Janet
Fredin at the NEC Systems Laboratory in Texas in 1993, and
she periodically updates this version, including parallel

Hardware Specifics 6-13

usage, most recently in Oct. 2003. You should select both
*UNX and *SNG when manually activating ACTVTE.CODE, and
compile actvte by "f90 -ew -o actvte.x actvte.f".

 Silicon Graphics: This refers to MIPS based systems.
For SGI's Intel processor based systems marketed as "Altix"
or "XE blades", see the 'linux-ia64 section'. This version
is used at a fair number of external sites, so the source
code is reliable. SGI has sold machines with R2000, R3000,
R4x00, R5000, R8000, R10000, R12000, and R14000 processors.
You can type "hinv" to find out which you have. The
targets "sgi32" and "sgi64"assume that you have the newest
processor, if not, change the architecture from '-r12000'
and instruction set from '-64 -mips4' if you have older
equipment. (For example, the instruction set might be '-
mips2' on very old machines, or '-n32 -mips3'). For many
years, the compiler optimization was set at -O2 to try to
avoid numerical problems, but in 2002 it was reset to -O3.
If you find the test examples don't work, please recompile
with the safer level -O2 optimization.

 The SGI version uses an old SHMEM-based message passing
file, and does not support all options in GAMESS. This
means that subgroups in FMO, or parallel CCSD(T) will not
run on old Origin systems. Do not attempt to use the web
patches from Omar Stradella that you might be familiar with
from previous versions of GAMESS on Origin, this is
embedded in the SHMEM-based file that comes with GAMESS.

 Sun: scalar system. This version is set up for the
ultraSPARC or Opteron chips, running Solaris. The target
for either chip is "sun64" as the scripts can automatically
detect which one you are using, and adjust for that. Since
Sun provided a ultraSPARC E450 system in 1998, two
ultraSPARC3 Sunfire 280R systems in 2002, and a Opteron
V40Z system in 2006, to the group at Iowa State, the Sun
version is very reliable. Install the SunPerf math library
from the compiler suite for maximum BLAS performance.
Parallelization is accomplished using TCP/IP sockets and
SystemV shared memory.

